
ADVANCED FLOW-CONTROL MECHANISMS FOR THE

SOCKETS DIRECT PROTOCOL OVER INFINIBAND

P. BALAJI, S. BHAGVAT, D. K. PANDA, R. THAKUR, AND W. GROPP

Preprint #ANL/MCS-P1422-0507

Argonne National Laboratory



Advanced Flow-control Mechanisms for the

Sockets Direct Protocol over InfiniBand∗

P. Balaji† S. Bhagvat‡ D. K. Panda§ R. Thakur† W. Gropp†

†Math. And Comp. Science,

Argonne National Laboratory

{balaji, thakur, gropp}@mcs.anl.gov

‡Scalable Systems Group,

Dell Inc.

sitha bhagvat@dell.com

§Comp. Science and Engg.,

Ohio State University

panda@cse.ohio-state.edu

Abstract

The Sockets Direct Protocol (SDP) is an industry standard to allow

existing TCP/IP applications to be executed on high-speed networks

such as InfiniBand (IB). Like many other high-speed networks, IB

requires the receiver process to inform the network interface card

(NIC), before the data arrives, about buffers in which incoming data

has to be placed. To ensure that the receiver process is ready to re-

ceive data, the sender process typically performs flow-control on the

data transmission. Existing designs of SDP flow-control are naive

and do not take advantage of several interesting features provided by

IB. Specifically, features such as RDMA are only used for perform-

ing zero-copy communication, although RDMA has more capabili-

ties such as sender-side buffer management (where a sender process

can manage SDP resources for the sender as well as the receiver).

Similarly, IB also provides hardware flow-control capabilities that

have not been studied in previous literature. In this paper, we utilize

these capabilities to improve the SDP flow-control over IB using two

designs: RDMA-based flow-control and NIC-assisted RDMA-based

flow-control. We evaluate the designs using micro-benchmarks and

real applications. Our evaluations reveal that these designs can im-

prove the resource usage of SDP and consequently its performance

by an order-of-magnitude in some cases. Moreover we can achieve

10-20% improvement in performance for various applications.

1 Introduction

The Sockets Direct Protocol (SDP) [2] is an industry standard

to allow existing TCP/IP applications to be executed on high-

speed networks such as InfiniBand (IB) [1] and iWARP [5]. It

is designed to transparently improve the performance of such

applications by utilizing the hardware features of these net-

works. There are several implementations of SDP/IB. The

first implementation [7] utilized IB send-receive operations

to transmit data using intermediate buffer copies while tak-

ing advantage of IB’s hardware protocol stack. Later de-

∗This research is funded in part by DOE grants #DE-FC02-06ER25749

and #DE-FC02-06ER25755; by NSF grants #CNS-0403342 and #CNS-

0509452; by an STTR subcontract from RNet Technologies; and by the

Mathematical, Information, and Computational Sciences Division subpro-

gram of the Office of Advanced Scientific Computing Research, Office of

Science, U.S. Department of Energy (contract DE-AC02-06CH11357).

signs [14, 6] extended this to utilize remote direct memory ac-

cess (RDMA) to allow for zero-copy message transfers. Each

design has its pros and cons. The buffer copy mechanism

performs data copies during communication, adding overhead

especially for large messages. Zero-copy approaches perform

on-the-fly registration of buffers with the network interface

card (NIC) and synchronization between the sender and re-

ceiver, adding overhead especially for small and medium-

sized messages. Thus, to maximize performance, SDP stacks

utilize the buffer copy mechanism for small and mediummes-

sages (up to 32KB), and zero-copymechanisms for large mes-

sages (greater than 32KB). In this paper, we deal only with the

buffer copy mechanism used for small and mediummessages.

While the buffer copy design takes advantage of IB’s hard-

ware protocol stack, it is naive in aspects such as flow-control.

Like many other high-speed networks, IB requires the re-

ceiver process to inform the NIC, before data arrives, about

buffers in which incoming data has to be placed. To ensure

that the receiver NIC is ready to receive data, the sender pro-

cess performs flow-control on data transmission. The existing

design of SDP flow-control uses send-receive-based commu-

nication, with each process managing its local flow-control

buffers. With the receiver managing its local buffers, how-

ever, the sender is not aware of the receiver’s exact usage sta-

tus and layout. Thus, the flow-control tends to be conservative

resulting in underutilization of buffers and performance loss.

RDMA, however, has more capabilities than just zero-copy

communication. For example, it offers sender-side buffer

management. Since RDMA is completely handled by the

sender process, it allows this process to have complete con-

trol of SDP resources, such as flow-control buffers, on both

the sender and receiver side. Further, IB provides hardware

flow-control capabilities that have not been addressed so far.

In this paper, we propose two novel designs to improve the

flow-control and performance for small and medium mes-

sages in SDP. The first design, RDMA-based flow-control,

uses RDMA to allow the sender to manage both the sender

and the receiver buffers. This design, as we will see in the

later sections, achieves better utilization of the SDP buffer

resources and consequently better performance. However,

1



Buffer

Flow−control
SDP

Buffer

Flow−control
SDP

Buffer

Flow−control
SDP

Buffer

Flow−control
SDP

Buffer

Flow−control
SDP

Buffer

Flow−control
SDP

Buffer

Flow−control
SDP

Buffer

Flow−control
SDP

Application

SDP

Network

Application

Sender

Application

Receiver

ReceiveTransmit

Messages Messages
Copy Copy

Figure 1: Credit-based Flow-control Mechanism

it assumes (from a performance standpoint) that the appli-

cation will perform frequent communication to ensure that

data is flushed out regularly from these buffers. Not doing

so can result in performance penalty. The second design,

NIC-assisted RDMA-based flow-control, utilizes IB’s hard-

ware flow-control to extend RDMA-based flow-control with

asynchronous communication progress (i.e., data flushing)

without sacrificing performance.

We demonstrate the capabilities of these designs using micro-

benchmarks as well as real applications. Our results show that

these designs can achieve almost an order-of-magnitude im-

provement in the bandwidth achieved by medium sized mes-

sages. Moreover, we can achieve performance improvements

of about 10% in a virtual microscope application and close to

20% in an isosurface visual rendering application.

2 Existing Credit-based Flow-control

Several high-speed networks, including IB, require the re-

ceiver to prepost work queue entries (WQEs) informing the

NIC about buffers in which messages should be received be-

fore each message arrives. To ensure that receive WQEs are

posted before any data arrives, SDP performs flow-control.

Currently, it uses a credit-based approach for achieving this.

This flow-control is separate from IB’s hardware flow-control

and is a consequence of adopting existing designs of high-

performance sockets on other networks [16, 15, 8].

2.1 Overview of Credit-based Flow-control

In credit-based flow-control (Figure 1), the sender is initially

given a number of credits, say N . Each process allocates N
SDP send and N SDP receive flow-control buffers, each of
size S bytes. The receiver posts N receive WQEs to the NIC
pointing to the receive flow-control buffers; that is, the next

N messages will go into these buffers. On a send() call,
each message smaller than S bytes is copied into a send buffer
and transmitted to the corresponding receive buffer. Mes-

sages larger than S bytes are segmented and transmitted in a
pipelined manner. On a recv() call, data is copied from the

receive buffer to the destination buffer, and an acknowledg-

ment (ACK) is sent to the sender informing it that the receive

buffer is free to be reused. The sender loses a credit for every

message sent and gains a credit for every ACK received.

Previous designs [7] also extend this design by delaying

ACKs. In other words, the receiver sends an ACK after half

the credits have been used instead of sending one after each

received message. This approach reduces the amount of com-

munication required and improves performance.

2.2 Limitations of Credit-based Flow-control

Credit-based flow-control has two primary disadvantages:

buffer utilization and network utilization.

Buffer Utilization: In credit-based flow control, each mes-

sage uses at least one credit irrespective of its size. Sup-

pose the sender wants to sendN 1B messages, and each SDP
flow-control buffer is 8KB. Since the receiver has preposted

N WQEs pointing to its receive buffers, each message is re-
ceived in a separate buffer, effectively wasting 99.98% of the

space allotted; in other words, only 1B of each 8KB SDP

buffer is utilized. This wastage also reflects on the number

of messages transmitted; excessive underutilization of buffer

space results in the sender believing that it has used up the

receiver resources, in spite of having free space available.

Network Utilization: In credit-based flow-control, on a

send() call, SDP copies the message into the send flow-

control buffer, waits until it has enough credits, and transmits

the data to the receiver. Thus, when small and medium mes-

sages are transmitted, they are directly pushed to the network

resulting in underutilization of the network and consequently

performance loss. On the other hand, coalescing multiple

small messages can allow SDP to transmit larger messages

over the network and thus improve network utilization.

3 RDMA-based Flow-control

While credit-based flow-control is simple and widely ac-

cepted, it has several limitations, especially for small and

medium messages. In this section, we describe RDMA-based

2



Application

SDP

Network

Application

Sender

Application

Receiver

RDMA Write with Immediate Data

Messages Messages

SDP SDP

Copy Copy

Flow−control Buffer Flow−control Buffer

Figure 2: RDMA-based Flow-control Mechanism

flow-control, a new approach utilizing IB RDMA capability

to improve the resource usage and performance of SDP.

3.1 Overview of RDMA-based Flow-control

Figure 2 illustrates RDMA-based flow-control, which differs

from credit-based flow-control in two areas: improved buffer

utilization and improved network utilization.

Improving Buffer Utilization: RDMA-based flow-control

uses RDMA write with immediate data operations to allow

the sender to manage where exactly data is buffered on the

sender as well as the receiver SDP flow-control buffers. This

approach allows data to be better packed, thus utilizing the

buffers more efficiently. In credit-based flow-control,N SDP
flow-control buffers each of size S are allocated, where N is
the number of credits. In RDMA-based flow-control, on the

other hand, one large flow-control buffer of size (N × S) is
allocated. When the first message (size P ) has to be commu-
nicated, it is placed (using RDMAwrite with immediate data)

at the start of the receive buffer. When the second message of

size Q has to be communicated, since the sender knows the
exact usage of the receive buffer (the first P bytes are used),
this message is written starting at byte (P +1) of the receiver
buffer. This approach allows the sender to completely uti-

lize the available space in the sender as well as receiver SDP

buffers. On a recv() call, once data is copied from the re-

ceiver SDP buffer to the destination buffer, the receiver sends

an acknowledgment to the sender informing it about the addi-

tional available space.

Improving Network Utilization: As long as space is avail-

able in the SDP receive buffer, RDMA-based flow-control fol-

lows a similar approach as credit-based flow-control; it sends

out data before returning from the send() call. Once no

more space is available on the receiver side, however, mes-

sages are copied into SDP send buffers, and control is re-

turned to the application. This approach gives RDMA-based

flow-control an opportunity to coalesce multiple small mes-

sages. When space is freed up in the SDP receive buffer, this

data is sent as one large message instead of multiple small

messages. This approach as two advantages. First, since as

long as space is available in the receive buffer, data is sent out

immediately, latency of small messages is not hurt. Second,

when a large number of small or medium messages are trans-

mitted, though the first few messages are sent immediately,

the remaining are coalesced and sent as large messages, thus

improving network utilization and performance.

In summary, RDMA-based flow-control avoids buffer

wastage by using the RDMA’s sender-side buffer manage-

ment and improves network utilization and communication

performance by coalescing messages.

3.2 Limitations of RDMA-based Flow-control

While RDMA-based flow-control can achieve better resource

utilization and performance, it has one disadvantage: the lack

of communication progress in some cases. Consider an exam-

ple with an 64KB SDP flow-control buffer where the sender

initiates 64 sends of 2KB each, total of 128KB. Of these, 32

messages (64KB) are directly transferred to the SDP buffer

on the receiver. Then, if the receiver is not actively receiving

data, the sender will run out of space in the receive buffer to

write more data. Thus, the remaining 32messages (64KB) are

copied to the SDP send buffer, and control is returned to the

application. At this time, suppose the sender goes into a large

computation loop. The application on the receiver side, how-

ever, calls the recv() call, copies the 64KB it has already re-

ceived, frees the SDP receive buffer, and sends an ACK to the

sender informing it that the SDP receive buffer can be reused.

In this situation, though the sender has buffered data to be sent

and has been informed about available receiver buffer space,

it cannot see this information until the application comes out

of the computation loop and calls a communication function.

Thus, communication progress is halted.

Note that credit-based flow-control does not face this limita-

tion because for every send() call, if the sender does not

have credits, it blocks until credits are received and posts the

data to the network before returning control.

3



SDP

Network

SDP SDP

Window
Virtual

(use hardware flow−control)

Handled Messages

NIC

(software message coalescing)
Handled Messages

Software

Application

Sender

Application

Receiver

Messages
Copy

Application

Messages
Copy

RDMA Write with Immediate Data

Interrupt

Flow−control Buffer Flow−control Buffer

Figure 3: NIC-assisted RDMA-based Flow-control Mechanism

4 NIC-assisted Flow-control

Both credit-based flow-control and RDMA-based flow-

control have disadvantages. Credit-based flow-control suffers

from underutilization of SDP buffers and the network and re-

sults in low performance. While RDMA-based flow-control

improves these aspects, it suffers from lack of communica-

tion progress when a large number of small messages have to

be transmitted. To deal with these issues, we propose NIC-

assisted RDMA-based flow-control. This mechanism extends

RDMA-based flow-control by utilizing IB’s hardware flow-

control capabilities. In other words, it uses RDMA-based

flow-control to coalesce messages as appropriate and improve

performance and at the same time uses the IB hardware flow-

control to ensure asynchronous communication progress.

NIC-assisted flow control comprises of two main sub-

schemes: virtual window scheme, which aims at utilizing IB’s

hardware flow-control while handling its shortcomings, and

asynchronous interrupt scheme, which enhances the virtual

window scheme to improve performance by coalescing data.

4.1 Virtual Window Scheme

IB’s hardware flow-control is not a byte-level flow-control,

but rather a message-level flow-control; it makes sure that the

sender NIC sends out only as many messages as the receiver

NIC is expecting. The onus of ensuring that the receiver has

appropriate buffer space for each message is on the upper lay-

ers such as SDP. To handle this situation, we utilize the virtual

window (W) scheme. The primary idea of this scheme is to

ensure that each posted receive WQE has a guarantee on the

amount of buffer space available. For example, if the sender

wants to send a message of 8KB, the receiver has to post a

receive WQE only after 8KB of space is available.

In this scheme, the receiver posts a receive WQE only when

at least the necessary virtual window size space is available

in the SDP receive buffer. Thus, if the SDP buffer size is S
bytes, the receiver initially posts S/W receive WQEs, where

W is the virtual window size. The sender, likewise, makes

sure that message segments posted to the network are always

smaller than or equal to W bytes, by performing appropriate

segmentation. Thus, the first S/W messages can definitely

be accommodated in the SDP receive buffer. If the sender

has to send more messages than S/W , it posts send WQEs
corresponding to the additional data. However, since all the

posted receive WQEs would be used up, IB hardware flow-

control ensures that this data is not sent out by the sender NIC

until the receiver posts additional receive WQEs.

We note that although each receive WQE corresponds to W
bytes of available buffer space, this space can be anywhere

in the SDP receive buffer; that is, the mapping between the

WQE and the actual location of the corresponding buffer is

not performed by the receiver. The sender uses RDMA write

with immediate data operations to manage the actual buffer

location to which each receive WQE maps. This flexibility

allows the receiver to manage only the logical space allocated

to each WQE, instead of the actual SDP buffer. For example,

suppose the SDP buffer is 64KB and the virtual window is

8KB. The receiver initially posts 8 receive WQEs. The vir-

tual window allocated to each receive WQE would be bytes

(1 to 8K), (8K+1 to 16K), and so forth. Now, suppose the

first message is only 1KB. In this case, the virtual windows

corresponding to the remaining WQEs automatically shift by

7KB and would be bytes (1K+1 to 9K), (9K+1 to 17K), and

so forth. The final 7KB is retained as free space. Since the

sender is managing the actual SDP receive buffers, this shift-

ing of the virtual windows is transparent to the receiver pro-

cess. Later, if the second message that arrives is also 1KB, the

virtual windows for the remainingWQEs again automatically

shift and leave a total of 14KB of free space. Since this free

space is more than the virtual window size (8KB), SDP can

post an additional WQE, after which 6KB of free space will

be available. When the receiver applications calls a recv(),

the data in the SDP receive buffer is copied to the destination

buffer, and more free space is created.

4



4.2 Asynchronous Interrupt Scheme

While the virtual window scheme provides capabilities to uti-

lize IB hardware flow-control, it does not coalesce messages

to improve performance. The asynchronous interrupt scheme

is designed based on two primary goals: (i) coalesce mes-

sages to improve performance; (ii) utilize the virtual window

schemewith IB hardware interrupts to carry out asynchronous

communication progress without hurting performance.

Message Coalescing: In this scheme the SDP send buffer is

divided into two portions: NIC-handled buffer and software-

handled buffer (Figure 3). The NIC-handled buffer follows a

similar pattern as the virtual window scheme. That is, data is

copied into the SDP send buffer and a corresponding send

WQE is posted to the NIC. The NIC uses hardware flow-

control to send the data only after the receiver posts a receive

WQE. After the NIC-handled buffer is full, data is copied into

the software-handled buffer. This data is not directly sent out

but is held, allowing it to be coalesced with later messages.

Asynchronous Communication Progress: During message

coalescing, data is copied into the software-handled SDP

buffer and control returned to the application. If more mes-

sages are communicated later, they can be coalesced together

with this data to form larger messages and thus improve per-

formance. If no other messages are communicated later, how-

ever, we need to asynchronously flush this data out. To do

so, we request IB hardware interrupts for the messages in

the NIC-handled buffer. Thus, once the first message that is

queued in the NIC-handled buffer is transmitted, an interrupt

is generated that is appropriately handled to flush out the data

in the software-handled buffer as well. Although hardware

interrupts are typically expensive, in this design the NIC can

continue to transmit other messages in the NIC-handled buffer

(using IB hardware flow-control), thus parallelizing the inter-

rupt processing with communication. This design allows us to

handle the interrupt without facing any performance penalty.

5 Experimental Results

In this section, we compare the performance of RDMA-based

flow-control and NIC-assisted RDMA-based flow-control,

with that of credit-based flow-control. We first describe the

experimental test-bed in Section 5.1. Next, we evaluate the

designs based on micro-benchmarks in Section 5.2 and then

on real applications in Section 5.3.

5.1 Experimental Test-bed

The experimental test-bed consists of a 16-node cluster with

dual 3.6 GHz Intel Xeon EM64T processors. Each node has a

2 MB L2 cache and 512 MB of 333 MHz DDR SDRAM. The

nodes are equipped with Mellanox MT25208 InfiniHost III

DDR PCI-Express adapters and are connected to a Mellanox

MTS-2400, 24-port fully nonblocking DDR switch. The SDP

stack is an in-house implementation at the Ohio State Univer-

sity. This stack is similar to other SDP stacks such as that

available in the OpenFabrics distribution [4] except that it is

completely in user-space and is built over the VAPI verbs in-

terface provided by Mellanox Technologies.

For each experiment, ten or more runs/executions are con-

ducted, the highest and lowest values are dropped (to discard

anomalies), and the average of the remaining values is re-

ported. For micro-benchmark evaluations, the results of each

run are an average of 10,000 or more iterations.

5.2 Micro-benchmark Based Evaluation

In this section, we evaluate the flow-control designs using var-

ious micro-benchmark tests.

5.2.1 Ping-pong Latency and Uni-directional Bandwidth

Ping-pongLatency: Figure 4(a) shows the ping-pong latency

of SDP with the three flow-control designs. In this experi-

ment, the sender sends a message of size S to the receiver, on

receiving which the receiver sends back another message of

the same size to the sender. This is repeated several times and

the total time averaged over the number of iterations to give

the average round-trip time. The ping-pong latency reported

here is one-half of the round-trip time, that is, the time taken

for a message to be transferred from one node to another.

As shown in the figure, all three schemes perform identically.

This result is expected as the three schemes differ only in

the way they handle flow-control when there is either no re-

mote credit available (credit-based flow-control) or no space

available in the remote SDP buffer (RDMA-based and NIC-

assisted flow-control). In the ping-pong latency test, only

one message is communicated before the sender waits for a

response from the remote process. Thus, there is no flow-

control issue in this test and all schemes behave identically.

Unidirectional Bandwidth: Figure 4(b) shows the unidirec-

tional bandwidth of the three flow-control mechanisms. In

this experiment, the sender sends a single message of size S

a number of times to the receiver. On receiving all the mes-

sages, the receiver sends back one small message to the sender

indicating that it has received the messages. The sender cal-

culates the total time, subtracts the one way latency of the

message sent by the receiver, and based on the remaining time

calculates the amount of data it had transmitted per unit time.

As shown in the figure, RDMA-based flow-control achieves

the best performance, while credit-based flow-control

achieves the worst, especially for small and medium-sized

messages. For messages in the 256B to 4KB range, we no-

tice almost an order of magnitude better performance. This

behavior is expected because RDMA-based flow-control co-

alesces messages and thus utilizes the network more effec-

tively resulting in a significantly better performance. In the

figure, we also notice that the performance of NIC-assisted

RDMA-based flow-control is very close to that of RDMA-

based flow-control. This result shows that our scheme is able

5



Ping-pong Latency

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Message Size (bytes)

L
a
te

n
c
y
 (

u
s
)

Credit-based Flow-control

RDMA-based Flow-control

NIC-assisted Flow-control

Uni-directional Bandwidth

0

1000

2000

3000

4000

5000

6000

7000

1 4 16 64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message Size (bytes)

B
a
n
d
w

id
th

 (
M

b
p
s
)

Credit-based Flow-control

RDMA-based Flow-control

NIC-assisted Flow-control

Figure 4: SDP micro-benchmark evaluation: (a) Ping-pong Latency and (b) Uni-directional Bandwidth

to effectively hide the cost of interrupt handling by overlap-

ping interrupt processing with data transfer time.

5.2.2 Communication Progress Benchmark

The communication progress test is similar to a ping-pong la-

tency test but with two changes. First, instead of one message

being sent in each direction, a burst of 100 messages is used.

Second, after each burst, an additional computation is added.

If the flow-control scheme can achieve good communication

progress, it can send out data even when the application is

performing other computation. Thus, the receiver can receive

the data immediately, and the computation on both the sender

and the receiver is parallelized to some extent. However, if

the flow-control scheme buffers data in its send buffer with-

out performing good communication progress, the transmis-

sion of data is delayed until the computation is completed;

that is, the receiver would be waiting to receive more data,

which is available in the sender’s SDP buffer but has not been

transmitted. Only after the sender’s computation is complete,

when it tries to receive data, is this data flushed out. Thus, in

this case, the computation on the sender and receiver is com-

pletely serialized resulting in poor performance.

Communication Progress Capability

0

1000

2000

3000

4000

5000

6000

7000

8000

0 200 400 600 800 1000 1200 1400 1600

Delay (us)

L
a
te

n
c
y
 (

u
s
)

Credit-based Flow-control

RDMA-based Flow-control

NIC-assisted Flow-control

Figure 5: Communication Progress Benchmark

In Figure 5, we report the performance of the three flow-

control schemes for a message size of 4KB with varying

amounts of computation. In the figure, we notice that when

there is no or minimal computation, RDMA-based flow-

control and NIC-assisted RDMA-based flow-control take the

least amount of time. Credit-based flow-control, on the other

hand, takes the most time. As the amount of computa-

tion increases, however, we see that credit-based flow-control

and NIC-assisted RDMA-based flow-control scale well, while

RDMA-based flow-control deteriorates rapidly. In fact, for

computation amounts greater than 1000µs, it is outperformed
even by credit-based flow-control.

This test shows that credit-based flow-control and NIC-

assisted flow-control are able to achieve good communica-

tion progress even when the application performs interleav-

ing computation. For credit-based flow-control, when no re-

mote credits are available, the scheme just blocks, waiting

for the credits. Thus, the send() call does not return un-

til the data is actually sent out. Consequently, the commu-

nication progress is good. For NIC-assisted RDMA-based

flow-control, although data is buffered in the SDP send buffer

without being immediately transmitted, the NIC interrupt en-

sures that the data is flushed out even when the application

is busy with its computation. Thus, again the communication

progress is good. RDMA-based flow-control, on the other

hand, is not able to achieve good communication progress be-

cause this scheme buffers data hoping to coalesce it with later

messages. Without communicating more messages, however,

when the application starts doing additional computation, the

buffered data has to wait without being flushed out.

5.2.3 Buffer Utilization Test

The buffer utilization test demonstrates the amount of SDP

buffer space that is utilized by the different schemes. In this

benchmark, we profile the SDP library to periodicallymonitor

the amount of buffer space in which data is already copied

and is not free to be used. The average percentage usage of

the buffer space is measured and shown in Figures 6(a) (for

64KB SDP buffer size) and 6(b) (for 256KB SDP buffer size).

We note two important aspects in these figures:

6



Buffer Utilization (SDP buffer size: 8KB x 8 credits = 64KB)

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

Message Size (bytes)

U
ti
liz

a
ti
o
n
 (

%
)

Credit-based Flow-control

RDMA-based Flow-control

NIC-assisted Flow-control

Buffer Utilization (SDP buffer size: 32KB x 8 credits = 256KB)

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K

Message Size (bytes)

U
ti
liz

a
ti
o
n
 (

%
)

Credit-based Flow-control

RDMA-based Flow-control

NIC-assisted Flow-control

Figure 6: Buffer Utilization with SDP buffer size of : (a) 8KB x 8 credits = 64KB and (b) 32KB x 8 credits = 256KB

1. The buffer utilization of the RDMA-based flow-control

and NIC-assisted RDMA-based flow-control is much

higher than that of credit-based flow-control. This is

attributed to the sender-side buffer management capa-

bility of RDMA, which allows data messages to be

placed more compactly, thus allowing for improved

buffer usage. In credit-based flow-control, when each

SDP buffer is 8KB (Figure 6(a)), the scheme is able to

reach 100% utilization only for message sizes of 8KB or

higher. When each SDP buffer is 32KB (Figure 6(b)),

the scheme achieves a maximum of 25% utilization.

2. Although the overall trend of these results is similar to

the bandwidth test (Figure 4(b)), we notice that the buffer

utilization peaks a lot more rapidly; that is, for a SDP

buffer size of 64KB, peak buffer utilization is achieved

at a message size of 512B itself. This indicates that the

sender is able to pack data into the send buffers and is

ready to transmit it, but the receiver is not able to receive

data as fast, resulting in more data being accumulated in

the SDP buffers and consequently a high utilization.

5.3 Application-based Evaluation

In this section, we evaluate the three flow-control designs

based on two different applications, virtual microscope [12]

and iso-surface visual rendering [11], that have been devel-

oped using the data-cutter library [9].

Overview of the Data-cutter Library: Data-Cutter is a

component-based framework [10] developed by University

of Maryland. It provides a framework, called filter-stream

programming, for developing data-intensive applications. In

this framework, the application processing structure is imple-

mented as a set of components, called filters. Data exchange

between filters is performed through a stream abstraction that

denotes a unidirectional data flow from one filter to another.

The overall processing structure of an application is realized

by a filter group, which is a set of filters connected through

logical streams. An application query is handled as a unit

of work (UOW) by the filter group. The size of the UOW

also represents the granularity in which data segments are

distributed in the system and the granularity in which data

processing is pipelined. Several data-intensive applications

have been designed and developed by using the data-cutter

run-time framework such as the virtual microscope applica-

tion and the iso-surface visual rendering application.

Virtual Microscope: Virtual microscope [12] is a digitized mi-

croscopy application. The software support required to store,

retrieve, and process digitized slides to provide interactive re-

sponse times for the standard behavior of a physical micro-

scope is a challenging issue [3, 12]. The main difficulty stems

from the handling of large volumes of image data, which can

range from a few hundreds of megabytes to several gigabytes.

At a basic level, the software system should emulate the use

of a physical microscope, including continuously moving the

stage and changing magnification. The processing of client

queries requires projecting high-resolution data onto a grid of

suitable resolution and appropriately composing pixels map-

ping onto a single grid point.

Iso-surface Visual Rendering: Iso-surface rendering [13] is

widely used technique in many areas, including environmen-

tal simulations, biomedical images, and oil reservoir simu-

lators, for extracting and simplifying visualization of large

datasets within a 3D volume. In this paper, we utilize a

component-based implementation of such rendering [11].

Evaluation of the Data-cutterApplications: Figure 7 shows

the performance of the virtual microscope and iso-surface vi-

sual rendering applications for the different flow-control de-

signs. Both applications have been executed with a UOW of

1KB. The complete dataset is about 1GB, which is hosted on

a RAM disk in order to avoid disk fetch overheads in the ex-

periment. The virtual microscope application used five filters:

read data, decompress, clip, zoom, and view. For this ap-

plication, five instances of the filter group (total 25 filters)

were placed on 13 dual-processor nodes. The iso-surface

visual rendering application used four filters: read dataset,

iso-surface extraction, shade and rasterize, and merge/view.

For this application, six instances of the filter group (total 24

7



Virtual Microscope Application

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

512x512 1024x1024 2048x2048 4096x4096

Dataset Dimensions

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

Credit-based Flow-control

RDMA-based Flow-control

NIC-assisted Flow-control

Iso-surface Application

0

100

200

300

400

500

600

700

800

1024x1024 2048x2048 4096x4096 8192x8192

Dataset Dimensions

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

Credit-based Flow-control

RDMA-based Flow-control

NIC-assisted Flow-control

Figure 7: Application Evaluation with Data-cutter: (a) Virtual Microscope and (b) Iso-surface Visual Rendering

filters) were placed on 12 dual-processor nodes. Each filter

performs some computation and communicates the processed

data to the next filter. Once the communication is initiated, the

filter starts computation on the next UOW, thus attempting to

overlap communication with computation.

As shown in the figure, credit-based flow-control shows poor

performance for both applications with all dataset sizes com-

pared to RDMA-based and NIC-assisted RDMA-based flow-

control. In these applications, since multiple UOWs are pro-

cessed and communicated to the next filter, the coalescing ca-

pability of these designs allows them to utilize the network

more effectively and hence achieve better performance. Our

designs outperform credit-based flow-control by around 10%

for the virtual microscope application and close to 20% for

the iso-surface visual rendering application.

We also notice no difference in the performance of RDMA-

based and NIC-assisted RDMA-based flow-control. This re-

sult shows that the enhanced communication progress is not

very beneficial since the applications themselves frequently

make communication calls to ensure such progress.

6 Conclusions

In this paper, we discussed the limitations of the exist-

ing credit-based flow-control in the Sockets Direct Protocol

(SDP) over IB. We pointed out that SDP currently does not

take advantage of the various features provided by IB. For

example, RDMA is used only for zero-copy communication,

and its other capabilities such as sender-side buffer manage-

ment are unutilized. Similarly, IB’s hardware flow-control has

not been harnessed so far. We proposed two new flow-control

mechanisms, known as RDMA-based flow-control and NIC-

assisted RDMA-based flow-control, to handle these limita-

tions and improve the resource usage and performance of

SDP. We presented a detailed overview of the two designs

and evaluated them using micro-benchmarks as well as ap-

plications. Our results show that these schemes can achieve

nearly an order-of-magnitude improvement in the bandwidth

achieved by SDP and around 10-20% improvement in appli-

cation performance.

References

[1] InfiniBand Trade Association. http://www.infinibandta.com.

[2] SDP Specification. http://www.rdmaconsortium.org/home.

[3] A. Afework, M. D. Beynon, F. Bustamante, A. Demarzo, R. Ferreira,

R. Miller, M. Silberman, J. Saltz, A. Sussman, and H. Tsang. Digital

Dynamic Telepathology - The Virtual Microscope. In AMIA, 1998.

[4] OpenFabrics Alliance. http://www.openib.org.

[5] S. Bailey and T. Talpey. Remote Direct Data Placement (RDDP), April

2005.

[6] P. Balaji, S. Bhagvat, H.-W. Jin, and D. K. Panda. Asynchronous Zero-

copy Communication for Synchronous Sockets in the Sockets Direct

Protocol (SDP) over InfiniBand. In CAC, 2006.

[7] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu,

and D. K. Panda. Sockets Direct Protocol over InfiniBand in Clusters:

Is it Beneficial? In ISPASS, 2004.

[8] P. Balaji, P. Shivam, P. Wyckoff, and D. K. Panda. High Performance

User Level Sockets over Gigabit Ethernet. In Cluster, 2002.

[9] M. Beynon, T. Kurc, A. Sussman, and J. Saltz. Design of a Framework

for Data-Intensive Wide-Area Applications. In HCW, 2000.

[10] M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Sussman, and

J. Saltz. Distributed Processing of Very Large Datasets with DataCutter.

Parallel Computing, October 2001.

[11] M. D. Beynon, T. Kurc, U. Catalyurek, and J. Saltz. A Component-

based Implementation of Iso-surface Rendering for Visualizing Large

Datasets. Report CS-TR-4249 and UMIACS-TR-2001-34, University of

Maryland, Department of Computer Science and UMIACS, 2001.

[12] U. Catalyurek, M. D. Beynon, C. Chang, T. Kurc, A. Sussman, and

J. Saltz. The Virtual Microscope. IEEE Transactions on Information

Technology in Biomedicine, 2002.

[13] J. Gao and H. Shen. Parallel View Dependent Isosurface Extraction

using Multi-Pass Occlusion Culling. In ACM/IEEE Symposium on Par-

allel and Large Data Visualization and Graphics, 2001.

[14] D. Goldenberg, M. Kagan, R. Ravid, and M. Tsirkin. Zero Copy Sock-

ets Direct Protocol over InfiniBand - Preliminary Implementation and

Performance Analysis. In HotI, 2005.

[15] J. S. Kim, K. Kim, and S. I. Jung. SOVIA: A User-level Sockets Layer

Over Virtual Interface Architecture. In Cluster, 2001.

[16] H. V. Shah, C. Pu, and R. S. Madukkarumukumana. High Performance

Sockets and RPC over Virtual Interface (VI) Architecture. In CANPC,

1999.

8


